litellm

πŸš… LiteLLM

<p align="center">
    <p align="center">
    <a href="https://render.com/deploy?repo=https://github.com/BerriAI/litellm" target="_blank" rel="nofollow"><img src="https://render.com/images/deploy-to-render-button.svg" alt="Deploy to Render"></a>
    <a href="https://railway.app/template/HLP0Ub?referralCode=jch2ME">
      <img src="https://railway.app/button.svg" alt="Deploy on Railway">
    </a>
    </p>
    <p align="center">Call all LLM APIs using the OpenAI format [Bedrock, Huggingface, VertexAI, TogetherAI, Azure, OpenAI, Groq etc.]
    <br>
</p>

LiteLLM Proxy Server (LLM Gateway) | Hosted Proxy (Preview) | <a href="https://docs.litellm.ai/docs/enterprise"target="_blank">Enterprise Tier</a>

PyPI Version Y Combinator W23 Whatsapp Discord

LiteLLM manages:

Jump to LiteLLM Proxy (LLM Gateway) Docs
Jump to Supported LLM Providers

🚨 Stable Release: Use docker images with the -stable tag. These have undergone 12 hour load tests, before being published. More information about the release cycle here

Support for more providers. Missing a provider or LLM Platform, raise a feature request.

Usage (Docs)

[!IMPORTANT] LiteLLM v1.0.0 now requires openai>=1.0.0. Migration guide here
LiteLLM v1.40.14+ now requires pydantic>=2.0.0. No changes required.

Open In Colab

pip install litellm
from litellm import completion
import os

## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-openai-key"
os.environ["ANTHROPIC_API_KEY"] = "your-anthropic-key"

messages = [{ "content": "Hello, how are you?","role": "user"}]

# openai call
response = completion(model="openai/gpt-4o", messages=messages)

# anthropic call
response = completion(model="anthropic/claude-3-sonnet-20240229", messages=messages)
print(response)

Response (OpenAI Format)

{
    "id": "chatcmpl-565d891b-a42e-4c39-8d14-82a1f5208885",
    "created": 1734366691,
    "model": "claude-3-sonnet-20240229",
    "object": "chat.completion",
    "system_fingerprint": null,
    "choices": [
        {
            "finish_reason": "stop",
            "index": 0,
            "message": {
                "content": "Hello! As an AI language model, I don't have feelings, but I'm operating properly and ready to assist you with any questions or tasks you may have. How can I help you today?",
                "role": "assistant",
                "tool_calls": null,
                "function_call": null
            }
        }
    ],
    "usage": {
        "completion_tokens": 43,
        "prompt_tokens": 13,
        "total_tokens": 56,
        "completion_tokens_details": null,
        "prompt_tokens_details": {
            "audio_tokens": null,
            "cached_tokens": 0
        },
        "cache_creation_input_tokens": 0,
        "cache_read_input_tokens": 0
    }
}

Call any model supported by a provider, with model=<provider_name>/<model_name>. There might be provider-specific details here, so refer to provider docs for more information

Async (Docs)

from litellm import acompletion
import asyncio

async def test_get_response():
    user_message = "Hello, how are you?"
    messages = [{"content": user_message, "role": "user"}]
    response = await acompletion(model="openai/gpt-4o", messages=messages)
    return response

response = asyncio.run(test_get_response())
print(response)

Streaming (Docs)

liteLLM supports streaming the model response back, pass stream=True to get a streaming iterator in response.
Streaming is supported for all models (Bedrock, Huggingface, TogetherAI, Azure, OpenAI, etc.)

from litellm import completion
response = completion(model="openai/gpt-4o", messages=messages, stream=True)
for part in response:
    print(part.choices[0].delta.content or "")

# claude 2
response = completion('anthropic/claude-3-sonnet-20240229', messages, stream=True)
for part in response:
    print(part)

Response chunk (OpenAI Format)

{
    "id": "chatcmpl-2be06597-eb60-4c70-9ec5-8cd2ab1b4697",
    "created": 1734366925,
    "model": "claude-3-sonnet-20240229",
    "object": "chat.completion.chunk",
    "system_fingerprint": null,
    "choices": [
        {
            "finish_reason": null,
            "index": 0,
            "delta": {
                "content": "Hello",
                "role": "assistant",
                "function_call": null,
                "tool_calls": null,
                "audio": null
            },
            "logprobs": null
        }
    ]
}

Logging Observability (Docs)

LiteLLM exposes pre defined callbacks to send data to Lunary, MLflow, Langfuse, DynamoDB, s3 Buckets, Helicone, Promptlayer, Traceloop, Athina, Slack

from litellm import completion

## set env variables for logging tools (when using MLflow, no API key set up is required)
os.environ["LUNARY_PUBLIC_KEY"] = "your-lunary-public-key"
os.environ["HELICONE_API_KEY"] = "your-helicone-auth-key"
os.environ["LANGFUSE_PUBLIC_KEY"] = ""
os.environ["LANGFUSE_SECRET_KEY"] = ""
os.environ["ATHINA_API_KEY"] = "your-athina-api-key"

os.environ["OPENAI_API_KEY"] = "your-openai-key"

# set callbacks
litellm.success_callback = ["lunary", "mlflow", "langfuse", "athina", "helicone"] # log input/output to lunary, langfuse, supabase, athina, helicone etc

#openai call
response = completion(model="openai/gpt-4o", messages=[{"role": "user", "content": "Hi πŸ‘‹ - i'm openai"}])

LiteLLM Proxy Server (LLM Gateway) - (Docs)

Track spend + Load Balance across multiple projects

Hosted Proxy (Preview)

The proxy provides:

  1. Hooks for auth
  2. Hooks for logging
  3. Cost tracking
  4. Rate Limiting

πŸ“– Proxy Endpoints - Swagger Docs

Quick Start Proxy - CLI

pip install 'litellm[proxy]'

Step 1: Start litellm proxy

$ litellm --model huggingface/bigcode/starcoder

#INFO: Proxy running on http://0.0.0.0:4000

Step 2: Make ChatCompletions Request to Proxy

[!IMPORTANT] πŸ’‘ Use LiteLLM Proxy with Langchain (Python, JS), OpenAI SDK (Python, JS) Anthropic SDK, Mistral SDK, LlamaIndex, Instructor, Curl

import openai # openai v1.0.0+
client = openai.OpenAI(api_key="anything",base_url="http://0.0.0.0:4000") # set proxy to base_url
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
    {
        "role": "user",
        "content": "this is a test request, write a short poem"
    }
])

print(response)

Proxy Key Management (Docs)

Connect the proxy with a Postgres DB to create proxy keys

# Get the code
git clone https://github.com/BerriAI/litellm

# Go to folder
cd litellm

# Add the master key - you can change this after setup
echo 'LITELLM_MASTER_KEY="sk-1234"' > .env

# Add the litellm salt key - you cannot change this after adding a model
# It is used to encrypt / decrypt your LLM API Key credentials
# We recommend - https://1password.com/password-generator/ 
# password generator to get a random hash for litellm salt key
echo 'LITELLM_SALT_KEY="sk-1234"' >> .env

source .env

# Start
docker-compose up

UI on /ui on your proxy server ui_3

Set budgets and rate limits across multiple projects POST /key/generate

Request

curl 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data-raw '{"models": ["gpt-3.5-turbo", "gpt-4", "claude-2"], "duration": "20m","metadata": {"user": "ishaan@berri.ai", "team": "core-infra"}}'

Expected Response

{
    "key": "sk-kdEXbIqZRwEeEiHwdg7sFA", # Bearer token
    "expires": "2023-11-19T01:38:25.838000+00:00" # datetime object
}

Supported Providers (Docs)

Provider Completion Streaming Async Completion Async Streaming Async Embedding Async Image Generation
openai βœ… βœ… βœ… βœ… βœ… βœ…
Meta - Llama API βœ… βœ… βœ… βœ… Β  Β 
azure βœ… βœ… βœ… βœ… βœ… βœ…
AI/ML API βœ… βœ… βœ… βœ… βœ… βœ…
aws - sagemaker βœ… βœ… βœ… βœ… βœ… Β 
aws - bedrock βœ… βœ… βœ… βœ… βœ… Β 
google - vertex_ai βœ… βœ… βœ… βœ… βœ… βœ…
google - palm βœ… βœ… βœ… βœ… Β  Β 
google AI Studio - gemini βœ… βœ… βœ… βœ… Β  Β 
mistral ai api βœ… βœ… βœ… βœ… βœ… Β 
cloudflare AI Workers βœ… βœ… βœ… βœ… Β  Β 
cohere βœ… βœ… βœ… βœ… βœ… Β 
anthropic βœ… βœ… βœ… βœ… Β  Β 
empower βœ… βœ… βœ… βœ… Β  Β 
huggingface βœ… βœ… βœ… βœ… βœ… Β 
replicate βœ… βœ… βœ… βœ… Β  Β 
together_ai βœ… βœ… βœ… βœ… Β  Β 
openrouter βœ… βœ… βœ… βœ… Β  Β 
ai21 βœ… βœ… βœ… βœ… Β  Β 
baseten βœ… βœ… βœ… βœ… Β  Β 
vllm βœ… βœ… βœ… βœ… Β  Β 
nlp_cloud βœ… βœ… βœ… βœ… Β  Β 
aleph alpha βœ… βœ… βœ… βœ… Β  Β 
petals βœ… βœ… βœ… βœ… Β  Β 
ollama βœ… βœ… βœ… βœ… βœ… Β 
deepinfra βœ… βœ… βœ… βœ… Β  Β 
perplexity-ai βœ… βœ… βœ… βœ… Β  Β 
Groq AI βœ… βœ… βœ… βœ… Β  Β 
Deepseek βœ… βœ… βœ… βœ… Β  Β 
anyscale βœ… βœ… βœ… βœ… Β  Β 
IBM - watsonx.ai βœ… βœ… βœ… βœ… βœ… Β 
voyage ai Β  Β  Β  Β  βœ… Β 
xinference [Xorbits Inference] Β  Β  Β  Β  βœ… Β 
FriendliAI βœ… βœ… βœ… βœ… Β  Β 
Galadriel βœ… βœ… βœ… βœ… Β  Β 
Novita AI βœ… βœ… βœ… βœ… Β  Β 
Featherless AI βœ… βœ… βœ… βœ… Β  Β 
Nebius AI Studio βœ… βœ… βœ… βœ… βœ… Β 

Read the Docs

Contributing

Interested in contributing? Contributions to LiteLLM Python SDK, Proxy Server, and LLM integrations are both accepted and highly encouraged!

Quick start: git clone β†’ make install-dev β†’ make format β†’ make lint β†’ make test-unit

See our comprehensive Contributing Guide (CONTRIBUTING.md) for detailed instructions.

Enterprise

For companies that need better security, user management and professional support

Talk to founders

This covers:

Contributing

We welcome contributions to LiteLLM! Whether you’re fixing bugs, adding features, or improving documentation, we appreciate your help.

Quick Start for Contributors

git clone https://github.com/BerriAI/litellm.git
cd litellm
make install-dev    # Install development dependencies
make format         # Format your code
make lint           # Run all linting checks
make test-unit      # Run unit tests

For detailed contributing guidelines, see CONTRIBUTING.md.

Code Quality / Linting

LiteLLM follows the Google Python Style Guide.

Our automated checks include:

Run all checks locally:

make lint           # Run all linting (matches CI)
make format-check   # Check formatting only

All these checks must pass before your PR can be merged.

Support / talk with founders

Why did we build this

Contributors

Run in Developer mode

Services

  1. Setup .env file in root
  2. Run dependant services docker-compose up db prometheus

Backend

  1. (In root) create virtual environment python -m venv .venv
  2. Activate virtual environment source .venv/bin/activate
  3. Install dependencies pip install -e ".[all]"
  4. Start proxy backend uvicorn litellm.proxy.proxy_server:app --host localhost --port 4000 --reload

Frontend

  1. Navigate to ui/litellm-dashboard
  2. Install dependencies npm install
  3. Run npm run dev to start the dashboard